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welcome!

agenda for course:

course materials will eventually all be on the course website:

http://lefft.xyz/r_minicourse

each week we'll have slides, notes, and a script. little exercises will be interleaved throughout
the notes. the best way to write up solutions is to start a new R script called (e.g.)
week1_exercises.r and type directly into that.

there will also be a list of links to useful resources up on the site

week 1 – R workflow, navigation, programming basics

week 2 – working with datasets and external files, data cleaning + manipulation

week 3 – summarizing data with dplyr::, visualizing data with ggplot2::

week 4 – document authoring with R Markdown, working with the web

·

·

·

·
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types of files we'll be using

R scripts

a plain-text file with extension .R or .r

all plain-text files (e.g. .txt) can be opened and edited directly in any text editor

contains R code that we'll run interactively in R Studio

also contains comments, which are just annotations that explain what the code is doing

·

·

·

·
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types of files we'll be using

datasets

all kinds of extensions, e.g. .csv, .tsv, .xls, .xlsx, .dat, .sav, .dta. nowadays, R can
read them all. we'll go through examples of several in week 2.

working with .csv files is generally preferable, since they are simple and come in plain-text
format.

proprietary formats like .xlsx have certain nice features, but they're binary files, which can
make their behavior unpredictable (and depend on the Excel version used to create them). 

a less common format is .Rdata/.rda, which contains an R workspace with datasets and
objects pre-loaded. (not plain-text so I try to avoid them)

·

·

·

·
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types of files we'll be using

R Markdown files

extension .Rmd or .rmd

plain-text format (opens in any text editor)

a special kind of R script from which nice, clean documents can be easily generated (in .pdf,
.html, or .docx formats)

easiest way to compile is with cmd+shift+k from R Studio

·

·

·

·
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firing up R via R Studio

when you're using R, it's "looking" in a specific directory (folder). many tears have been shed
over trying to get R to look in the desired directory (mine and those of countless other
victims).

the best way to start an R session is to grab/make a plain text file with extension .r (e.g.
my_script.r), put it in its own folder (e.g. R_folder), and then open it with R Studio (which
you should set as the default).

if you start R by opening a specific script in R Studio, R will be looking into the folder
containing your script and you won't have to mess with working directories.

you can also to go "tools" –> "global options" –> "default working directory" within R Studio to
tell R where it should look if you just open R Studio directly
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how to talk to R – via command-line interface (yikes :/)
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how to talk to R – via default R GUI (better…)
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how to talk to R – via R Studio IDE (waaaaaow!)
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navigating R Studio
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2. Variables and Assignments

time to start writing code!

# welcome to the R mini-course. in keeping with tradition... 

print("...an obligatory 'hello, world!'")

## [1] "...an obligatory 'hello, world!'"
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# this line is a comment, so R will always ignore it. 

# this is a comment too, since it also starts with "#". 

 

# but the next one is a line of real R code, which does some arithmetic: 

5 * 3

## [1] 15

# we can do all kinds of familiar math operations: 

5 * 3 + 1

## [1] 16

# 'member "PEMDAS"?? applies here too -- compare the last line to this one: 

5 * (3 + 1)

## [1] 20
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# usually when we do some math, we want to save the result for future use. 

# we can do this by **assigning** a computation to a **variable** 

firstvar <- 5 * (3 + 1)

# now 'firstvar' is an **object**. we can see its value by printing it. 

# sending `firstvar` to the interpreter is equivalent to `print(firstvar)` 

firstvar

## [1] 20
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# we can put basically anything into a variable, and we can call a variable 

# pretty much whatever we want (but do avoid special characters besides "_") 

myvar <- "boosh!" 

myvar 

 

myVar <- 5.5 

myVar

## [1] "boosh!" 
## [1] 5.5

# including other variables or computations involving them: 

my_var <- myvar 

my_var 

 

myvar0 <- myVar / (myVar * 1.5) 

myvar0

## [1] "boosh!" 
## [1] 0.6666667 19/40



# when you introduce variables, they'll appear in the environment tab of the  

# top-right pane in R Studio. you can remove variables you're no longer 

# using with `rm()`. (this isn't necessary, but it saves space in both  

# your brain and your computer's) 

rm(myvar) 

rm(my_var) 

rm(myVar) 

rm(myvar0)
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3. Vectors

# R was designed with statistical applications in mind, so naturally there's 

# lots of ways to represent collections or sequences of values (e.g. numbers). 

 

# in R, a **vector** is the simplest list-like data structure.  

# (but be careful with this terminology -- a **list** is something else) 

# you can create a vector with the `c()` function (for "concatenate") 

myvec <- c(1, 2, 3, 4, 5) 

myvec

## [1] 1 2 3 4 5

anothervec <- c(4.5, 4.12, 1.0, 7.99) 

anothervec

## [1] 4.50 4.12 1.00 7.99
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# vectors can hold elements of any type, but they must all be of the same type. 

# to keep things straight in your head, maybe include the data type in the name 

myvec_char <- c("a", "b", "c", "d", "e") 

myvec_char

## [1] "a" "b" "c" "d" "e"

# if we try the following, R will coerce the numbers into characters: 

myvec2 <- c("a", "b", "c", 1, 2, 3) 

myvec2

## [1] "a" "b" "c" "1" "2" "3"

rm(myvec2)
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suppose the only reason we created myvec and anothervec was to put them together with
some other stuff, and save that to longvec. in this case, we can just remove myvec and
anothervec, and use longvec henceforth (assuming we don't care about myvec or
anothervec)

now we can see what the [1] in the console output was – it tells you the index of the first
element on each line! here, 7.99 is the 11th, so the second line starts with [11].

note also that the whole numbers (integers) now have decimals because they've been
coerced into decimal-based numbers called doubles in R. see the notes for more info.

# you can put vectors or values together with `c()` 

longvec <- c(0, myvec, 9, 80, anothervec, 0, 420) 

rm(myvec) 

rm(anothervec) 

 

longvec

##  [1]   0.00   1.00   2.00   3.00   4.00   5.00   9.00  80.00   4.50   4.12 
## [11]   1.00   7.99   0.00 420.00
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note: putting parentheses around an assignment statement causes the variable targeted by
the assignment (here blah) to be printed to the console. this is often convenient because it
saves a line of space (w/o parentheses, we would've had to say blah or print(blah) on the
next line to see it).

# to see how many elements a vector has, get its `length()` 

length(longvec)

## [1] 14

# to see what the unique values are, use `unique()` (you'll get a vector back) 

unique(longvec)

##  [1]   0.00   1.00   2.00   3.00   4.00   5.00   9.00  80.00   4.50   4.12 
## [11]   7.99 420.00

# a very common operation is to see how many unique values there are: 

(blah <- length(unique(longvec)))

## [1] 12
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# to see a frequency table over a vector, use `table()` 

table(longvec)

## longvec 
##    0    1    2    3    4 4.12  4.5    5 7.99    9   80  420  
##    2    2    1    1    1    1    1    1    1    1    1    1

# note that this works for all kinds of vectors 

table(c("a", "b", "c", "b", "b", "b", "a"))

##  
## a b c  
## 2 4 1

table(c(TRUE, FALSE, FALSE, FALSE, TRUE, FALSE))

##  
## FALSE  TRUE  
##     4     2
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an important but not obvious thing:

R has a special value called NA, which represents missing data.

by default, table() won't tell you about NA's (annoying, ik!). so get in the habit of specifying
the useNA argument of table()

vec_with_NA <- c(1, 2, 3, 2, 2, NA, 3, NA, NA, 1, 1) 

table(vec_with_NA)

## vec_with_NA 
## 1 2 3  
## 3 3 2

table(vec_with_NA, useNA="ifany") # "ifany" or "always" or "no"

## vec_with_NA 
##    1    2    3 <NA>  
##    3    3    2    3
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notice that the structure of the last table command is:

table(VECTOR, useNA=CHARACTERSTRING)

some terminology:

table() is a function

table() has argument positions for a vector and for a string

we provided table() with two arguments:

the second argument position was named useNA

we used the argument binding syntax useNA="ifany"

·

·

·

a vector (that we refer to with vec_with_NA)

a character string (the string "ifany")

-

-

·

·
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argument-binding is kind of like variable assignment, but useNA doesn't become directly
available for use after we give it a value (it's "trapped" inside the function call).

this might feel kinda abstract, but i promise the intuition will become clearer the further along
we get.

some arguments – like useNA here – can be thought of as "options" of the function they
belong to.

# here's an example that might clarify the concept of argument binding: 

round(3.141592653, digits=4) 

round(3.141592653, digits=1) 

 

# if we don't tell it how many digits to round to, it defaults to 0 

round(3.141592653)

## [1] 3.1416 
## [1] 3.1 
## [1] 3
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round() is a commonly used function that illustrates an important concept called
vectorization.

many functions in R are vectorized by default, which means that they can take an individual
value (like the round() call above), or they can take a vector of values.

in the latter case, the function applies pointwise to each element of the vector, and returns a
vector with the same length as the input (and same order of elements):

in fact MOST STUFF IS VECTORIZED AND VECTORIZATION IS GREAT

technically: the return value of a vectorized function f() applied to a vector

  v <- c(v_1, v_2, ... , v_n)

is the vector f(v), which is

  c(f(v_1), f(v_2), ... , f(v_n))

round(longvec, digits=4)

##  [1]   0.00   1.00   2.00   3.00   4.00   5.00   9.00  80.00   4.50   4.12 
## [11]   1.00   7.99   0.00 420.00
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4. Subsetting and Indexing

we will very often want to access individual elements or subsets of a vector (e.g. if we've
sorted a vector and want to look at its first element)

there are several ways to do this. here are some examples to give you an idea (note that 1:5
is the vector c(1,2,3,4,5), and == is actual "equals")

we inspect these in more detail in the notes.

# a vector of several words 

vec_words <- c("first","second","third","fourth","fifth") 

vec_words[1] 

vec_words[2:3] 

vec_words[c(1,4)] 

vec_words[vec_words=="first"]

## [1] "first" 
## [1] "second" "third"  
## [1] "first"  "fourth" 
## [1] "first"
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it's annoying to have to type every element of a vector. fortunately, there are many functions
designed to make this unnecessary. for example rep() is short for "replicate"; seq() is short
for "sequence"; letters is a built-in constant for the vector c("a","b",...,"z")); and we
just saw the range operator :.

see this week's notes for discussion of the "DRY" principle in programming.

# you can also combine 'times' and 'each' inside of rep() 

# putting parentheses around an assignment statement causes it to print 

(vec_num <- rep(1:5, times=2))

##  [1] 1 2 3 4 5 1 2 3 4 5

(vec_abc <- rep(letters[1:5], each=2))

##  [1] "a" "a" "b" "b" "c" "c" "d" "d" "e" "e"

(vec_odd <- seq(from=1, to=19, by=2))

##  [1]  1  3  5  7  9 11 13 15 17 19

31/40



very often we'll want to e.g. get the average value or the sum of a vector. we'll get way more
into this in future sessions, but here's a preview:

exercise: compute pearson's r on vec_num and vec_odd using only arithmetic.

# get the mean with mean(), or calculate it ourselves! 

(vec_num_mean <- mean(vec_num)) 

(vec_num_mean <- sum(vec_num) / length(vec_num)) 

 

# get the (sample) variance with var(), or calculate it ourselves!  

(vec_num_var <- var(vec_num)) 

(vec_num_var <- sum((vec_num - mean(vec_num))^2)/(length(vec_num) - 1)) 

 

# get the correlation between vec_num and vec_odd (pearson's r) 

cor(vec_num, vec_odd, method="pearson")

## [1] 3 
## [1] 3 
## [1] 2.222222 
## [1] 2.222222 
## [1] 0.492366
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why should we care about vectors?!

here's an analogy to keep in mind: vectors are like columns of an abstract spreadsheet (not
like rows).

in fact, this is a bit more than an analogy in R!

R's implementation of a "spreadsheet" – the data frame – is quite literally a list of vectors. the
data frame is a beautiful data structure, and is used to represent (flat) datasets e.g. the
contents of an excel sheet.

we'll have a first look at data frames next

all their elements have to have the same type

they have a length and you can perform operations on them

they can contain missing values (NA)

·

·

·
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5. Data Frames!

a data frame is a list of vectors all of which have the same length.

see notes on use of line breaks for code legibility, and randomness with runif()

first_df <- data.frame(1:5, letters[1:5], c(TRUE, TRUE, FALSE, NA, FALSE)) 

 

# a slightly more interesting data frame, with names for columns.  

(cool_df <- data.frame( 

  id=paste0("id_", 1:6),             # unique identifier for each person 

  group=rep(c("a","b"), each=3),     # "a" = NYU law school, "b" = Columbia 

  score=runif(n=6, min=50, max=100)   # score on the NY bar exam 

))

##     id group    score 
## 1 id_1     a 77.16688 
## 2 id_2     a 96.19345 
## 3 id_3     a 54.00271 
## 4 id_4     b 85.81876 
## 5 id_5     b 59.09128 
## 6 id_6     b 98.41579
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we can access rows or columns using square-bracket syntax [ , ]. the $ for individual
columns is nice too – that gives us back a vector. lots of ways to slice + dice a df – below are
some examples.

cool_df[1:3, ]

##     id group    score 
## 1 id_1     a 77.16688 
## 2 id_2     a 96.19345 
## 3 id_3     a 54.00271

cool_df[, 1]

## [1] id_1 id_2 id_3 id_4 id_5 id_6 
## Levels: id_1 id_2 id_3 id_4 id_5 id_6

cool_df$score

## [1] 77.16688 96.19345 54.00271 85.81876 59.09128 98.41579
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look at the Base R cheatsheet for an excellent overview!

cool_df[["score"]]

## [1] 77.16688 96.19345 54.00271 85.81876 59.09128 98.41579

cool_df[, "score"]

## [1] 77.16688 96.19345 54.00271 85.81876 59.09128 98.41579

cool_df[, c("id","score")]

##     id    score 
## 1 id_1 77.16688 
## 2 id_2 96.19345 
## 3 id_3 54.00271 
## 4 id_4 85.81876 
## 5 id_5 59.09128 
## 6 id_6 98.41579
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let's see who passed the exam:

note: the output isn't quoted, and it says Levels: .... more next week/in notes!

we can add columns to a data frame by combining assignment <- with the dollar-sign $
column-grabbing syntax:

cool_df$id[cool_df$score >= 60]

## [1] id_1 id_2 id_4 id_6 
## Levels: id_1 id_2 id_3 id_4 id_5 id_6

cool_df$passed <- ifelse(cool_df$score > 60, TRUE, FALSE) 

cool_df$aced   <- ifelse(cool_df$score >= 90, TRUE, FALSE) 

cool_df$failed <- !cool_df$passed

exercise: compute the percentage of law students who aced the exam.

exercise: compute the mean score for each group. (hint: google aggregate())

exercise: how does the failed column get computed?!

·

·

·
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finally, some useful functions to use on data frames to check them out a bit. (note that you
can combine names() with assignment to change the column names)

exercise: change the name of the group column to "school""

exercise: recode school's values as "nyu" and "columbia"

head(cool_df, n=2) 

dim(cool_df)        # a vector of length 2: number of rows, number of cols 

nrow(cool_df)       # number of rows 

ncol(cool_df)       # number of columns 

names(cool_df)      # the names of the columns

##     id group    score passed  aced failed 
## 1 id_1     a 77.16688   TRUE FALSE  FALSE 
## 2 id_2     a 96.19345   TRUE  TRUE  FALSE 
## [1] 6 6 
## [1] 6 
## [1] 6 
## [1] "id"     "group"  "score"  "passed" "aced"   "failed"
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str(cool_df[, 1:4])      # the structure of the data frame    (first four cols)

## 'data.frame':    6 obs. of  4 variables: 
##  $ id    : Factor w/ 6 levels "id_1","id_2",..: 1 2 3 4 5 6 
##  $ group : Factor w/ 2 levels "a","b": 1 1 1 2 2 2 
##  $ score : num  77.2 96.2 54 85.8 59.1 ... 
##  $ passed: logi  TRUE TRUE FALSE TRUE FALSE TRUE

summary(cool_df[, 1:4])  # get useful info about each column  (first four cols)

##     id    group     score         passed        
##  id_1:1   a:3   Min.   :54.00   Mode :logical   
##  id_2:1   b:3   1st Qu.:63.61   FALSE:2         
##  id_3:1         Median :81.49   TRUE :4         
##  id_4:1         Mean   :78.45                   
##  id_5:1         3rd Qu.:93.60                   
##  id_6:1         Max.   :98.42
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6. Next Week

remember the bead curtain analogy ~~  
groovy dude  

installing and loading packages

more on data frames (factors, character, etc.)

reading in external datasets as data frames

manipulating data frames

cleaning up data frames

summarizing columns of data frames

group-wise summaries involving multiple columns

data frames data frames data frames woop woop!!!

·

·

·

·
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·
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·
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