
R mini-course: week 2
NORC, Academic Research Centers

http://lefft.xyz/r_minicourse 

timothy leffel, spring 2017

http://lefft.xyz/r_minicourse


housekeeping

agenda for the day:

all materials on the course website:

http://lefft.xyz/r_minicourse

prep for next week

week1 exercises

quick R Studio tips + tricks

looking at some real datasets

packages

reading ("loading/importing") and writing ("saving/exporting") data

common operations for data cleaning and transformation

writing pipe-chains via magrittr::'s forward pipe %>% (if time)

writing your own functions (if time)

·

·

·

·

·

·

·

·

·

2/53

http://lefft.xyz/r_minicourse


prep for next week

for next week: everyone obtain a dataset and send it to me!

(see sec 0 of week2 notes for details + some tips)

3/53



week1 exercises

4/53



a couple R Studio tips + tricks

1. multiple cursors in find+replace

2. "import dataset" functionality

5/53



multiple cursors

6/53



multiple cursors

7/53



multiple cursors

8/53



1. working with real data

9/53



iris and mtcars

head(iris, n=5)

##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
## 1          5.1         3.5          1.4         0.2  setosa 
## 2          4.9         3.0          1.4         0.2  setosa 
## 3          4.7         3.2          1.3         0.2  setosa 
## 4          4.6         3.1          1.5         0.2  setosa 
## 5          5.0         3.6          1.4         0.2  setosa

head(mtcars, n=5)

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb 
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2

10/53



We can just introduce a variable and assign a built-in dataset to it:

Let's check out what the columns are:

tim_mtcars <- mtcars

str(tim_mtcars)

## 'data.frame':    32 obs. of  11 variables: 
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ... 
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ... 
##  $ disp: num  160 160 108 258 360 ... 
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ... 
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ... 
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ... 
##  $ qsec: num  16.5 17 18.6 19.4 17 ... 
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ... 
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ... 
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ... 
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...

11/53



mtcars column info

mtcars$mpg – miles per gallon

mtcars$cyl – number of cylinders

mtcars$disp – displacement (in )

mtcars$hp – gross horsepower

mtcars$drat – rear axle ratio

mtcars$wt – weight (1000lb)

mtcars$qsec – 1/4 mile time

mtcars$vs – V/S (V- versus Straight block, I think)

mtcars$am – automatic or manual transmission

mtcars$gear – number of gears

mtcars$carb – number of carburetors

·

·

· 3

·

·

·

·

·

·

·

·

12/53



row names :/

since rownames(tim_mtcars) is a character vector, we can just move it to a column and then
delete the rownames.

rownames(tim_mtcars)

##  [1] "Mazda RX4"           "Mazda RX4 Wag"       "Datsun 710"          
##  [4] "Hornet 4 Drive"      "Hornet Sportabout"   "Valiant"             
##  [7] "Duster 360"          "Merc 240D"           "Merc 230"            
## [10] "Merc 280"            "Merc 280C"           "Merc 450SE"          
## [13] "Merc 450SL"          "Merc 450SLC"         "Cadillac Fleetwood"  
## [16] "Lincoln Continental" "Chrysler Imperial"   "Fiat 128"            
## [19] "Honda Civic"         "Toyota Corolla"      "Toyota Corona"       
## [22] "Dodge Challenger"    "AMC Javelin"         "Camaro Z28"          
## [25] "Pontiac Firebird"    "Fiat X1-9"           "Porsche 914-2"       
## [28] "Lotus Europa"        "Ford Pantera L"      "Ferrari Dino"        
## [31] "Maserati Bora"       "Volvo 142E"

tim_mtcars$make_model <- rownames(tim_mtcars) 

rownames(tim_mtcars) <- NULL 13/53



missing values

Do we have any missing values?

# one way to check would be: 

sum(is.na(tim_mtcars$mpg))

## [1] 0

sum(is.na(tim_mtcars$cyl))

## [1] 0

sum(is.na(tim_mtcars$disp))

## [1] 0

# ...

14/53



missing values

# a quicker way to check: 

colSums(is.na(tim_mtcars))

##        mpg        cyl       disp         hp       drat         wt  
##          0          0          0          0          0          0  
##       qsec         vs         am       gear       carb make_model  
##          0          0          0          0          0          0

# aaand make sure there aren't NA's that accidentally became characters 

# (note "NA" is not the same as NA) 

colSums(tim_mtcars=="NA")

##        mpg        cyl       disp         hp       drat         wt  
##          0          0          0          0          0          0  
##       qsec         vs         am       gear       carb make_model  
##          0          0          0          0          0          0

15/53



2. a brief but necessary detour: packages!

16/53



If you are using a particular package for the first time, you will have to install it, which is done
with install.packages("<package name>") (note quotes around the name). Everyone
should install the following packages for the class:

# install.packages("dplyr") 

# install.packages("reshape2") 

# install.packages("ggplot2")

17/53



After a package is installed, you can "load" it (i.e. make its functions available for use) with
library("<packagename>"). For this course, we'll use the following packages (maybe more
too).

# don't worry if you get some output here that you don't expect! 

# some packages send you messages when you load them. no need for concern.  

library("dplyr") 

library("reshape2") 

library("ggplot2")

18/53



You can see your library – a list of your installed packages – by saying library(), without an
argument. You can see which packages are currently attached ("loaded") with search(),
again with no argument.

note: R Studio has lots of point-and-click tools to deal with package management and data
import. Look at the R Studio IDE cheatsheet on the course page for details.

# see installed packages (will be different for everyone) 

# library() 

 

# see packages available *in current session* 

search()

##  [1] ".GlobalEnv"        "package:ggplot2"   "package:reshape2"  
##  [4] "package:dplyr"     "package:stats"     "package:graphics"  
##  [7] "package:grDevices" "package:utils"     "package:datasets"  
## [10] "package:methods"   "Autoloads"         "package:base"

19/53

http://lefft.xyz/r_minicourse/cheatsheets/cheatsheet_rstudio-IDE.pdf


3. the outside world (or: reading and writing external files)

20/53



3.1 read from a url

Here's a cool word-frequency dataset:

# link to url of a word frequency dataset 

link <- "http://lefft.xyz/r_minicourse/datasets/top5k-word-frequency-dot-info.csv" 

# read in the dataset with defaults (header=TRUE, sep=",") 

words <- read.csv(link) 

# look at the first few rows 

head(words, n=5)

##   Rank Word PartOfSpeech Frequency Dispersion 
## 1    1  the            a  22038615       0.98 
## 2    2   be            v  12545825       0.97 
## 3    3  and            c  10741073       0.99 
## 4    4   of            i  10343885       0.97 
## 5    5    a            a  10144200       0.98

21/53



3.2 read from a local file

Here's a government education dataset I found here.

# i saved it to a local folder, so I can read it in like this 

edu_data <- read.csv("datasets/university/postscndryunivsrvy2013dirinfo.csv") 

head(edu_data[, 1:10], n=5)

##   UNITID                              INSTNM 
## 1 100654            Alabama A & M University 
## 2 100663 University of Alabama at Birmingham 
## 3 100690                  Amridge University 
## 4 100706 University of Alabama in Huntsville 
## 5 100724            Alabama State University 
##                             ADDR       CITY STABBR        ZIP FIPS OBEREG 
## 1           4900 Meridian Street     Normal     AL      35762    1      5 
## 2 Administration Bldg Suite 1070 Birmingham     AL 35294-0110    1      5 
## 3                 1200 Taylor Rd Montgomery     AL 36117-3553    1      5 
## 4                301 Sparkman Dr Huntsville     AL      35899    1      5 
## 5           915 S Jackson Street Montgomery     AL 36104-0271    1      5 
##                    CHFNM  CHFTITLE 22/53

https://inventory.data.gov/dataset/032e19b4-5a90-41dc-83ff-6e4cd234f565/resource/38625c3d-5388-4c16-a30f-d105432553a4


3.3 reading different file types

excel .xls format:

library("readxl") 

# an example of reading xls datasets 

crime1 <- read_xls("datasets/crime/Crime2016EXCEL/noncampusarrest131415.xls") 

crime2 <- read_xls("datasets/crime/Crime2016EXCEL/noncampuscrime131415.xls") 

 

# see how many rows + columns each one has 

dim(crime1); dim(crime2)

## [1] 11306    24

## [1] 11306    46

23/53



stata .dta format:

# an example of reading a stata dta file (note we need the haven:: package) 

library("haven") 

election_data <- read_dta("datasets/election/bes_f2f_original_v3.0.dta") 

 

# notice that objects read from stata maintain some of their  

# idiosyncratic internal structure -- e.g. you can see the survey items  

# "embedded" inside the header fields in the R Studio spreadsheet view  

head(election_data, n=5)

## # A tibble: 5 x 476 
##   finalserialno serial wt_sel_wt wt_combined_main_capped wt_combined_main 
##           <dbl>  <dbl>     <dbl>                   <dbl>            <dbl> 
## 1         10102   2915  0.568195                0.594137         0.594137 
## 2         10104   2505  1.136390                1.188274         1.188274 
## 3         10107    876  1.136390                0.970153         0.970153 
## 4         10109    875  1.136390                0.996799         0.996799 
## 5         10202   3034  1.136390                0.968325         0.968325 
## # ... with 471 more variables: wt_combined_CSES <dbl>, A1 <chr>, 
## #   a02 <dbl+lbl>, a03 <dbl+lbl>, m02_1 <dbl+lbl>, m02_2 <dbl+lbl>, 24/53



extracting column info from .dta input:

# how many columns are there 

numcols <- ncol(election_data) 

# create an empty container to catch the column info text 

election_data_colinfo <- rep(NA, times=numcols) 

# for every number x between 1 and however many columns election_data has: 

for (x in 1:numcols){ 

  # to the x'th element of  

  election_data_colinfo[x] <- attributes(election_data[[x]])$label 

} 

# now make a df w each row as the name and description of an election_data col 

election_dictionary <- data.frame( 

  colname  = names(election_data),  

  colinfo  = election_data_colinfo 

)

25/53



we end up with a "data dictionary"

# check out the first 20 -- not bad, eh? 

head(election_dictionary, n=3)

##         colname                              colinfo 
## 1 finalserialno                  Final Serial Number 
## 2        serial             Respondent Serial Number 
## 3     wt_sel_wt Selection weight (including capping)

26/53



3.4 simulating data

If we don't have actual data on a topic but still want to explore it quantitatively, a good option
is to use randomly (but systematically) simulate some data.

# what's the probability that two of the people here have the same bday?! 

# here's one strategy we could use:  

# get a vector of days of the year  

days <- seq(as.Date("2017-01-01"), as.Date("2017-12-31"), "days") 

# define a df with 11 people, randomly assigning birthdays 

birthday <- data.frame( 

  # create 11 "people" 

  person = paste0("person_", 1:11), 

  # sample from days with replacement to assign birthdays 

  bday   = sample(days, size=11, replace=TRUE) 

) 

# write a statement that'll be true iff two ppl have the same bday 

length(unique(birthday$bday)) < nrow(birthday)

## [1] TRUE
27/53



more on birthdays

here's a simple simulation, based on the strategy in the previous slide

# define some parameters 

numsims <- 100 

numppl  <- 11 

# make a container to hold the simulation results 

container <- rep(NA, times=numsims) 

# loop over 1,2,...,numsims and generate numppl-many birthdays 

for (x in 1:numsims){ 

  dat <- sample(days, size=numppl, replace=TRUE) 

  # for each iteration, assign TRUE to the container element if we have a match 

  container[x] <- length(unique(dat)) < length(dat) 

} 

# now get the proportion of sims where there's a common bday 

sum(container==TRUE) / length(container)

## [1] 0.19

28/53



# make a quick plot to see the results 

ggplot2::qplot(container)

29/53



3.5 cleaning up a dataset and then writing (saving) it

Say we want to introduce info about the region of the manufacturer of each make/model in
the mtcars dataset. One approach:

first, list all the manufacturers in the dataset, organizing them by where the maker is from.

second, make a data frame consisting of all the unique manufacterers (mfr), and the
regions associated with them.

·

·

### step 1 

 

mfr_NA   <- c("Hornet", "Valiant", "Duster")           # unknown  manufacturer 

mfr_asia <- c("Mazda", "Datsun", "Honda", "Toyota")    # asian    manufacturer 

mfr_usa  <- c("Cadillac","Lincoln","Chrysler","Dodge", # american manufacturer 

              "AMC","Chevrolet","Pontiac","Ford")      # european manufacturer 

mfr_euro <- c("Mercedes", "Fiat", "Porsche", "Lotus",  

              "Ferrari", "Maserati", "Volvo")

30/53



A good way to represent this information would be as a data frame with two columns: one
listing the manufacturer, and the other listing the region.

### step 2 

 

# make a data frame assigning regions to car types 

car_regions <- data.frame( 

  # the mfr_* vectors strung together 

  make   = c(mfr_NA, mfr_asia, mfr_usa, mfr_euro),  

  # assign regions to manufacturers, based on the mfr_* vectors and 'make' 

  # the idea is to repeat the label for each value in the corresponding vector 

  region = c(rep(NA,    length(mfr_NA)),   rep("asia", length(mfr_asia)),  

             rep("usa", length(mfr_usa)),  rep("euro", length(mfr_euro))), 

  # since we know we'll be joining this with another df, don't use factors 

  stringsAsFactors=FALSE 

)

31/53



print(car_regions)

##         make region 
## 1     Hornet   <NA> 
## 2    Valiant   <NA> 
## 3     Duster   <NA> 
## 4      Mazda   asia 
## 5     Datsun   asia 
## 6      Honda   asia 
## 7     Toyota   asia 
## 8   Cadillac    usa 
## 9    Lincoln    usa 
## 10  Chrysler    usa 
## 11     Dodge    usa 
## 12       AMC    usa 
## 13 Chevrolet    usa 
## 14   Pontiac    usa 
## 15      Ford    usa 
## 16  Mercedes   euro 
## 17      Fiat   euro 
## 18   Porsche   euro 32/53



let's recode gear as a category, instead of a number

note: since we manipulated mtcars, now it shows up in the environment pane in R Studio :)

# make a "lookup table" that associates values of gear with the labels we want  

gear_lookup <- c(three=3, four=4, five=5) 

 

# now combine names(), match(), and [] to recode the values how we want them 

mtcars$gear <- names(gear_lookup[match(mtcars$gear, gear_lookup)])

33/53



some realistic data-cleaning operations (many ways to skin a cat!)

# the variable 'mtcars_clean' will hold the result of piping mtcars 

# into the chain mutate() %>% select() %>% rename() 

mtcars_clean <- mtcars %>%  

  mutate( 

    car       = row.names(mtcars),                        # create 'car' column 

    qsec      = round(qsec),                              # round qm time 

    mpg       = round(mpg),                               # round mpg 

    wt        = wt * 1000,                                # get weight in lbs 

    am        = ifelse(am==0, "manual", "auto"),          # code as char 

    musclecar = cyl >= 6 & hp > 200 & qsec < 16           # define a muscle car 

  ) %>%  

  select( 

    car, am, gear, musclecar, cyl,  

    hp, qsec, gear, wt, mpg 

  ) %>%  

  rename( 

    horsepower=hp, cylinders=cyl, qm_time=qsec,  

    num_gears=gear, lbs=wt, transmission=am 

  )
34/53



now the dataset is cleaned up to our liking and now we want to use the cleaned up vesion as
our official version of record (or share it with ppl)

# write as .csv (the default strategy) 

write.csv(mtcars_clean, file="mtcars_clean.csv", row.names=FALSE) 

 

# write as .rda (a compressed R data file -- can include multiple objects) 

save(mtcars_clean, file="mtcars_clean.rda")

35/53



you can export to excel format, including multiple sheets

# you'll get a message w instructions for installing some suggested packages --  

# i recommend following them  

library("rio") 

 

# export to sheets of an Excel workbook 

export(list(mtcars = mtcars, iris = iris), "multi.xlsx")

36/53



4. 99 problems!

see the notes for discussion of common problems/errors/pitfalls that will inevitably arise
when you are learning how to read and write datasets from different sources and in different
formats

37/53



5. now let's play with some data!

38/53



here's our cleaned up version of mtcars, which we saved as mtcars_clean.csv

car transmission num_gears musclecar cylinders horsepower qm_time lbs mpg

Mazda RX4 auto four FALSE 6 110 16 2620 21

Mazda RX4 Wag auto four FALSE 6 110 17 2875 21

Datsun 710 auto four FALSE 4 93 19 2320 23

Hornet 4 Drive manual three FALSE 6 110 19 3215 21

Hornet
Sportabout

manual three FALSE 8 175 17 3440 19

# read it in 

dat <- read.csv("mtcars_clean.csv") 

 

knitr::kable(head(dat, 5))

39/53



now let's manipulate it in a bunch of ways.

what should we do?!

some ideas:

aggregation 

subsetting

grouping vars (dplyr)

summary statistics

contingency tables

diagnostic plots

modeling…

·

·

·

·

·

·

·

40/53



if time 1: pipe-chains

Most R commands consist of a function applied to one or more arguments (potentially
assigning the result to a variable). In the case where there's only one argument, it can be nice
to use the forward pipe operator %>%. This is part of a family of similar operators defined in
the magrittr:: package, and is made use of heavily in modern dplyr:: data processing
workflows.

41/53



It's not as scary as it looks: x %>% f() is equivalent to f(x). What's nice about this is that you
can make "pipe-chains" when you want to apply a sequence of functions to a single object
(dplyr::'s functions are designed for exactly this). Forward pipe-chains have the following
shape:

x %>% f() %>% g() %>% h() %>% z()

which is equivalent to:

z(h(g(f(x))))

42/53



assuming we want to save the result of x applied to f() through z(), we can just assign the
whole chain to a variable. Here's a little example where given the schema above, x is chars,
and f() and g() are unique() and length().

chars <- sample(letters, size=20, replace=TRUE) 

 

# we could write 

numUnique <- length(unique(chars)) 

numUnique

## [1] 16

# or equivalently: 

numUnique <- chars %>% unique() %>% length() 

numUnique

## [1] 16

43/53



if time 2: writing functions

the more you use R, the more things you'll realize you could be doing in a way more efficient
manner.

Learning to write your own functions is a crucial step in learning any programming language,
including R.

44/53



question: how to get all the things coded as character?

thing1 <- factor(rep(1:3, 5), labels=c("catA", "catB", "catC")) 

thing2 <- factor(rep(4:6, 5), labels=c("catA", "catB", "catC")) 

thing3 <- factor(rep(3:5, 5), labels=c("catA", "catB", "catC")) 

thing4 <- factor(rep(2:4, 5), labels=c("catA", "catB", "catC")) 

thing5 <- factor(rep(3:1, 5), labels=c("catA", "catB", "catC"))

45/53



one solution:

more compact (in the long run at least!), function-based solution

thing1 <- as.character(thing1) 

thing2 <- as.character(thing2) 

# ...

# a quick function to save us keystrokes 

ac <- function(x){as.character(x)} 

 

thing1 <- ac(thing1) 

thing2 <- ac(thing2) 

# ...

46/53



another example:

# saves us even more keystrokes 

lu <- function(x){ 

  length(unique(x)) 

} 

 

lu(thing1)

## [1] 3

length(unique(thing1))

## [1] 3

47/53



So what can writing functions do for you?

# define analysis routine 

custom_summary <- function(df, group_col, measure_col){ 

  require("dplyr"); require("ggplot2") 

   

  df <- data.frame(group_col=df[[group_col]], measure_col=df[[measure_col]]) 

 

  out_table <- df %>% group_by(group_col) %>% summarize( 

    avg = mean(measure_col, na.rm=TRUE), 

    sd  = sd(measure_col, na.rm=TRUE)     # ... more calculations 

  ) %>% data.frame() 

   

  out_plot <- ggplot(out_table, aes(x=group_col, y=avg)) + 

    geom_bar(stat="identity") + 

    geom_errorbar(aes(ymin=avg-sd, ymax=avg+sd, width=.25)) + 

    labs(x=group_col, y=paste0("mean of ", measure_col, ", +/- sd"),  

         title=paste0("average ", measure_col, " by ", group_col)) 

   

  out <- list(table=out_table, plot=out_plot) 

  return(out) 

} 48/53



We can apply custom_summary() to mtcars in a number of ways. Summarize mtcars$mpg for
each value of mtcars$gear using custom_summary(), and assign the result to the variable
mpg_by_gear.

mpg_by_gear <- custom_summary(df=mtcars, group_col="gear", measure_col="mpg")

49/53



group_col avg sd

five 21.38000 6.658979

four 24.53333 5.276764

three 16.10667 3.371618

# print a table 

knitr::kable(mpg_by_gear$table)

50/53



# display the plot 

mpg_by_gear$plot

51/53



then rinse and repeat on whatever combo of dataset and variables you want!

(some combinations make more sense than others…)

52/53



next week…

we look through everyone's datasets and discuss any issues that came up

wide- vs long-format data, reshaping data, the concept of "tidy data"

visualizing a dataset as a class (type-along)

visualizing your own dataset with base graphics and ggplot2::

·

·

·

·

53/53


