R mini-course: week 2

NORC, Academic Research Centers

http://lefft.xyz/r_minicourse
timothy leffel, spring 2017

http://lefft.xyz/r_minicourse

housekeeping

agenda for the day:

- prep for next week

- week1 exercises

- quick R Studio tips + tricks

- looking at some real datasets

- packages

- reading ("loading/importing") and writing ("saving/exporting") data
- common operations for data cleaning and transformation

- writing pipe-chains via magrittr::'s forward pipe £>% (if time)

- writing your own functions (if time)

all materials on the course website:

http://lefft.xyz/r_minicourse

http://lefft.xyz/r_minicourse

prep for next week

for next week: everyone obtain a dataset and send it to me!

(see sec 0 of week2 notes for details + some tips)

week1 exercises

a couple R Studio tips + tricks

1. multiple cursors in find+replace

2. "import dataset" functionality

multiple cursors

multiple cursors

multiple cursors

1. working with real data

iris andmtcars

T EEd

TR EEd

head(iris, n=5)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1
4.9
4.7
4.6
5.0

head (mtcars, n=5)

Mazda RX4

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout

3.5
3.0
3.2
3.1
3.6

mpg cyl disp

21.0
21.0
22.8
21.4
18.7

6

0 O & O

160
160
108
258
360

1.4
1.4
1.3
1.5
1.4

hp drat

110
110

93
110
175

3.90
3.90
3.85
3.08
3.15

w W NN NN

wt

.620
.875
.320
.215
.440

0.2
0.2
0.2
0.2
0.2

gsec
16.46
17.02
18.61
19.44
17.02

setosa
setosa
setosa
setosa
setosa

Vs am gear carb

0

o~ KL O
o N = R

4

w W s

4

4
1
1
2

We can just introduce a variable and assign a built-in dataset to it:

Let's check out what the columns are:

TR R EEEELELEESR

'data.frame':

$
$

mpg :
cyl :
disp:
hp :
drat:
wt ¢
gsec:
Vs
am
gear:
carb:

num
num
num
num
num
num
num
num
num
num
num

tim mtcars <- mtcars

str(tim mtcars)

32 obs. of

66468638446
160 160 108 258 360

110 110 93 110 175 105 245 62 95 123 ...
3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92
2.62 2.88 2.32 3.21 3.44

16.5 17
0011
1110
4 4 43
4 411

18.6 19.4
01011
000O00O0
33344
21422

17

1
0
4
4

11 variables:
21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2

mtcars column info

- mtcars$mpg - miles per gallon

* mtcarss$cyl - number of cylinders

* mtcars$disp - displacement (in?)

* mtcars$hp - gross horsepower

- mtcars$drat - rear axle ratio

- mtcarsS$wt - weight (10001Ib)

- mtcars$gsec - 1/4 mile time

- mtcars$vs - V/S (V- versus Straight block, I think)
- mtcars$am - automatic or manual transmission

- mtcars$gear - number of gears

- mtcarsS$Scarb - number of carburetors

row names ./

rownames (tim mtcars)

[1] "Mazda RxX4" "Mazda RX4 Wag" "Datsun 710"
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"

[7] "Duster 360" "Merc 240D" "Merc 230"

[10] "Merc 280" "Merc 280C" "Merc 450SE"
[13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"

[19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
[22] "Dodge Challenger" "AMC Javelin" "Camaro z28"
[25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
[28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora" "Volvo 142E"

since rownames (tim mtcars) is a character vector, we can just move it to a column and then
delete the rownames.

tim mtcars$make model <- rownames (tim mtcars)

rownames (tim mtcars) <- NULL

missing values

Do we have any missing values?

one way to check would be:

sum(is.na(tim mtcars$mpg))
[1] 0

sum(is.na(tim mtcars$cyl))
[1] O

sum(is.na(tim mtcarss$disp))

[1] O

missing values

a quicker way to check:

colSums (is.na(tim mtcars))

#H#t mpg cyl disp hp drat wt
#H#t 0 0 0 0 0 0
#H#t gsec Vs am gear carb make model
0 0 0 0 0 0

aaand make sure there aren't NA's that accidentally became characters
(note "NA" is not the same as NA)

colSums (tim mtcars=="NA")

##t mpg cyl disp hp drat wt
#H#t 0 0 0 0 0 0
#H#t gsec Vs am gear carb make model
#H#t 0 0 0 0 0 0

2. a brief but necessary detour: packages!

If you are using a particular package for the first time, you will have to install it, which is done
with install.packages ("<package name>") (note quotes around the name). Everyone
should install the following packages for the class:

install.packages("dplyr")
install.packages("reshape2")
install.packages("ggplot2")

After a package is installed, you can "load" it (i.e. make its functions available for use) with
library("<packagename>"). For this course, we'll use the following packages (maybe more
too).

don't worry if you get some output here that you don't expect!

some packages send you messages when you load them. no need for concern.
library("dplyr")

library("reshape2")

library("ggplot2")

You can see your library - a list of your installed packages - by saying 1ibrary (), without an
argument. You can see which packages are currently attached ("loaded") with search(),
again with no argument.

see installed packages (will be different for everyone)
library()

see packages available *in current session*

search()
[1] ".GlobalEnv" "package:ggplot2" "package:reshape2"
[4] "package:dplyr" "package:stats" "package:graphics"”
[7] "package:grDevices" "package:utils" "package:datasets"”
[10] "package:methods" "Autoloads" "package:base"

note: R Studio has lots of point-and-click tools to deal with package management and data
import. Look at the R Studio IDE cheatsheet on the course page for details.

http://lefft.xyz/r_minicourse/cheatsheets/cheatsheet_rstudio-IDE.pdf

3. the outside world (or: reading and writing external files)

3.1 read from a url

Here's a cool word-frequency dataset:

link to url of a word frequency dataset

link <- "http://lefft.xyz/r minicourse/datasets/top5k-word-frequency-dot-info.csv"
read in the dataset with defaults (header=TRUE, sep=",")

words <- read.csv(link)

look at the first few rows

head(words, n=5)

Rank Word PartOfSpeech Frequency Dispersion

1 1 the a 22038615 0.98
#H 2 2 be v 12545825 0.97
3 3 and c 10741073 0.99
4 4 of i 10343885 0.97
5 5 a a 10144200 0.98

3.2 read from a local file

Here's a government education dataset | found here.

1 saved it to a local folder, so I can read it in like this
edu data <- read.csv('"datasets/university/postscndryunivsrvy2013dirinfo.csv")
head(edu data[, 1:10], n=5)

#H#t UNITID INSTNM

1 100654 Alabama A & M University

2 100663 University of Alabama at Birmingham

3 100690 Amridge University

4 100706 University of Alabama in Huntsville

5 100724 Alabama State University

ADDR CITY STABBR ZIP FIPS OBEREG
1 4900 Meridian Street Normal AL 35762 1 5
2 Administration Bldg Suite 1070 Birmingham AL, 35294-0110 1 5
3 1200 Taylor Rd Montgomery AL, 36117-3553 1 5
4 301 Sparkman Dr Huntsville AL 35899 1 5
5 915 S Jackson Street Montgomery AT, 36104-0271 1 5
##t CHFNM CHFTITLE

https://inventory.data.gov/dataset/032e19b4-5a90-41dc-83ff-6e4cd234f565/resource/38625c3d-5388-4c16-a30f-d105432553a4

3.3 reading different file types

excel .xIs format:

library("readxl")
an example of reading xls datasets
crimel <- read xls("datasets/crime/Crime2016EXCEL/noncampusarrest131415.x1s")

crime2 <- read xls('"datasets/crime/Crime2016EXCEL/noncampuscrimel31415.x1s")

see how many rows + columns each one has

dim(crimel); dim(crime2)

[1] 11306 24

[1] 11306 46

stata .dta format:

A tibble:

TR EEEELESR

H WO W N R

an example of reading a stata dta file (note we need the haven:: package)

library("haven")

election data <- read dta("datasets/election/bes_f2f original v3.0.dta")

notice that objects read from stata maintain some of their

idiosyncratic internal structure -- e.g. you can see the survey items

"embedded" inside the header fields in the R Studio spreadsheet view

head(election data, n=5)

5 x 476

finalserialno serial wt sel wt wt combined main capped wt combined main

<dbl>
10102
10104
10107
10109
10202

... with 471 more variables: wt combined CSES <dbl>, Al <chr>,

<dbl>
2915
2505
876
875
3034

<dbl>
0.568195
1.136390
1.136390
1.136390
1.136390

<dbl>
0.594137
1.188274
0.970153
0.996799
0.968325

<dbl>
0.594137
1.188274
0.970153
0.996799
0.968325

a02 <dbl+lbl>, a03 <dbl+lbl>, m02 1 <dbl+lbl>, m02 2 <dbl+lbl>,

extracting column info from .dta input:

how many columns are there
numcols <- ncol(election data)
create an empty container to catch the column info text
election data colinfo <- rep(NA, times=numcols)
for every number x between 1 and however many columns election data has:
for (x in 1l:numcols)({

to the x'th element of

election data colinfo[x] <- attributes(election data[[x]])$label
}
now make a df w each row as the name and description of an election data col
election dictionary <- data.frame(

colname = names(election data),

colinfo = election data colinfo

we end up with a "data dictionary"

check out the first 20 -- not bad, eh?

head(election dictionary, n=3)

Fid colname
1 finalserialno
2 serial

colinfo
Final Serial Number
Respondent Serial Number

3 wt sel wt Selection weight (including capping)

3.4 simulating data

If we don't have actual data on a topic but still want to explore it quantitatively, a good option
is to use randomly (but systematically) simulate some data.

what's the probability that two of the people here have the same bday?!
here's one strategy we could use:
get a vector of days of the year
days <- seq(as.Date("2017-01-01"), as.Date("2017-12-31"), "days")
define a df with 11 people, randomly assigning birthdays
birthday <- data.frame(

create 11 "people"”

person = pasteO("person ", 1:11),

sample from days with replacement to assign birthdays

bday = sample(days, size=11, replace=TRUE)
)
write a statement that'll be true iff two ppl have the same bday
length(unique(birthday$bday)) < nrow(birthday)

[1] TRUE

more on birthdays

here's a simple simulation, based on the strategy in the previous slide

define some parameters
numsims <- 100
numppl <- 11
make a container to hold the simulation results
container <- rep(NA, times=numsims)
loop over 1,2,...,numsims and generate numppl-many birthdays
for (x in l:numsims){
dat <- sample(days, size=numppl, replace=TRUE)
for each iteration, assign TRUE to the container element if we have a match
container[x] <- length(unique(dat)) < length(dat)
}
now get the proportion of sims where there's a common bday

sum(container==TRUE) / length(container)

[1] 0.19

make a quick plot to see the results

ggplot2: :gplot (container)

80-

60-

count
o
o

20-

] 1
FALSE TRUE

container

3.5 cleaning up a dataset and then writing (saving) it

Say we want to introduce info about the region of the manufacturer of each make/model in
the mtcars dataset. One approach:
first, list all the manufacturers in the dataset, organizing them by where the maker is from.

second, make a data frame consisting of all the unique manufacterers (mfr), and the
regions associated with them.

step 1
mfr NA <- c("Hornet", "Valiant", "Duster") # unknown manufacturer
mfr asia <- c("Mazda", "Datsun", "Honda", "Toyota") # asian manufacturer

non non

mfr usa <- c("Cadillac","Lincoln","Chrysler", "Dodge", # american manufacturer
"AMC", "Chevrolet", "Pontiac", "Ford") # european manufacturer
mfr euro <- c("Mercedes", "Fiat", "Porsche", "Lotus",

"Ferrari", "Maserati", "Volvo")

A good way to represent this information would be as a data frame with two columns: one
listing the manufacturer, and the other listing the region.

step 2

make a data frame assigning regions to car types
car regions <- data.frame(
the mfr * vectors strung together
make = c(mfr NA, mfr asia, mfr usa, mfr euro),
assign regions to manufacturers, based on the mfr * vectors and 'make’
the idea is to repeat the label for each value in the corresponding vector
region = c(rep(NA, length(mfr NA)), rep("asia", length(mfr asia)),
rep("usa", length(mfr usa)), rep("euro", length(mfr euro))),
since we know we'll be joining this with another df, don't use factors

stringsAsFactors=FALSE

LR EEEE P L L ELEEEEEESR

O 0 J 6 U1 b W N K-

_ o=
= o

e e e
0 N oUW N

print(car regions)

make region

Hornet
Valiant
Duster
Mazda
Datsun
Honda
Toyota
Cadillac
Lincoln
Chrysler
Dodge
AMC

Chevrolet

Pontiac
Ford
Mercedes
Fiat
Porsche

<NA>
<NA>
<NA>
asia
asia
asia
asia
usa
usa
usa
usa
usa
usa
usa
usa
euro
euro
euro

let's recode gear as a category, instead of a number

make a "lookup table" that associates values of gear with the labels we want

gear lookup <- c(three=3, four=4, five=5)

now combine names(), match(), and [] to recode the values how we want them

mtcars$gear <- names(gear lookup[match(mtcars$gear, gear lookup)])

note: since we manipulated mtcars, now it shows up in the environment pane in R Studio :)

some realistic data-cleaning operations (many ways to skin a cat!)

the variable 'mtcars clean' will hold the result of piping mtcars
into the chain mutate() %>% select() $>% rename()

mtcars clean <- mtcars %>%

mutate(
car = row.names (mtcars), # create 'car' column
gsec = round(gsec), # round gm time
mpg = round(mpg), # round mpg
wt = wt * 1000, # get weight in lbs
am = ifelse(am==0, "manual", "auto"), # code as char
musclecar = cyl >= 6 & hp > 200 & gsec < 16 # define a muscle car
) $>%
select(

car, am, gear, musclecar, cyl,
hp, gsec, gear, wt, mpg
) %>%
rename (
horsepower=hp, cylinders=cyl, gm time=gsec,

num gears=gear, lbs=wt, transmission=am

now the dataset is cleaned up to our liking and now we want to use the cleaned up vesion as
our official version of record (or share it with ppl)

write as .csv (the default strategy)

write.csv(mtcars clean, file="mtcars clean.csv", row.names=FALSE)

write as .rda (a compressed R data file -- can include multiple objects)

save (mtcars clean, file="mtcars clean.rda")

you can export to excel format, including multiple sheets

you'll get a message w instructions for installing some suggested packages --
1 recommend following them

library("rio")

export to sheets of an Excel workbook

export(list(mtcars = mtcars, iris = iris), "multi.xlsx")

4. 99 problems!

see the notes for discussion of common problems/errors/pitfalls that will inevitably arise
when you are learning how to read and write datasets from different sources and in different

formats

5. now let's play with some data!

here's our cleaned up version of mtcars, which we saved as mtcars _clean.csv

read it in

dat <- read.csv('"mtcars clean.csv")

knitr::kable(head(dat, 5))

transm|55|on num_gears | musclecar | cylinders | horsepower | gm_time nm

Mazda RX4 auto four FALSE 2620

Mazda RX4 Wag auto four FALSE 6 110 17 2875 21
Datsun 710 auto four FALSE 4 93 19 2320 23
Hornet 4 Drive manual three FALSE 6 110 19 3215 21
Hornet manual three FALSE 8 175 17 3440 19

Sportabout

now let's manipulate it in a bunch of ways.

what should we do?!

some ideas:

- aggregation

- subsetting

- grouping vars (dplyr)

-+ summary statistics

- contingency tables

- diagnostic plots
modeling...

if time 1: pipe-chains

Most R commands consist of a function applied to one or more arguments (potentially
assigning the result to a variable). In the case where there's only one argument, it can be nice
to use the forward pipe operator $>%. This is part of a family of similar operators defined in
the magrittr:: package, and is made use of heavily in modern dplyr:: data processing

workflows.

It's not as scary as it looks: x ¥>% £() is equivalent to £(x). What's nice about this is that you

can make "pipe-chains" when you want to apply a sequence of functions to a single object
(dplyr::'s functions are designed for exactly this). Forward pipe-chains have the following

shape:

X %% £() %>% g() %>% h() %>% z()

which is equivalent to:

z(h(g(f(x))))

assuming we want to save the result of x applied to £() through z (), we can just assign the
whole chain to a variable. Here's a little example where given the schema above, x is chars,
and £() and g() are unique() and length().

chars <- sample(letters, size=20, replace=TRUE)
we could write

numUnique <- length(unique(chars))

numUnique

[1] 16

or equivalently:
numUnique <- chars %>% unique() %>% length()

numUnique

[1] 16

if time 2: writing functions

the more you use R, the more things you'll realize you could be doing in a way more efficient
manner.

Learning to write your own functions is a crucial step in learning any programming language,
including R.

thingl <
thing2 <
thing3 <
thing4 <
thing5 <

factor(rep(l:3, 5), labels=c('"catA", "catB", "catC"))
factor(rep(4:6, 5), labels=c("catA", "catB", "catC"))
factor(rep(3:5, 5), labels=c("catA", "catB", "catC"))
factor(rep(2:4, 5), labels=c("catA", "catB", "catC"))
factor(rep(3:1, 5), labels=c("catA", "catB", "catC"))

question: how to get all the things coded as character?

one solution:

thingl <- as.character(thingl)
thing2 <- as.character(thing2)
e

more compact (in the long run at least!), function-based solution

a quick function to save us keystrokes

ac <- function(x){as.character(x)}

thingl <- ac(thingl)
thing2 <- ac(thing2)
oo

another example:

[1] 3

[1] 3

So what can writing functions do for you?

define analysis routine
custom summary <- function(df, group col, measure col){

require("dplyr"); require('"ggplot2")
df <- data.frame(group col=df[[group col]], measure col=df[[measure col]])

out table <- df %>% group by(group col) %>% summarize(
avg = mean(measure col, na.rm=TRUE),
sd = sd(measure col, na.rm=TRUE) # ... more calculations

) $>% data.frame()

out plot <- ggplot(out table, aes(x=group col, y=avg)) +
geom bar(stat="identity") +
geom errorbar (aes(ymin=avg-sd, ymax=avg+sd, width=.25)) +
labs (x=group col, y=pastel("mean of ", measure col, ", +/- sd"),

title=paste0l("average ", measure col, " by ", group col))

out <- list(table=out table, plot=out plot)

return(out)

We can apply custom summary () to mtcars in a number of ways. Summarize mtcars$mpg for
each value of mtcars$gear USINg custom summary (), and assign the result to the variable

mpg by gear.

mpg by gear <- custom summary(df=mtcars, group col="gear", measure col="mpg")

print a table
knitr::kable(mpg by gear$table)

five 21.38000 6.658979
four 24.53333 5.276764

three 16.10667 3.371618

display the plot
mpg_by gearS$plot

average mpg by gear

30

20~
10- -
0-

five four three
gear

mean of mpg, +/- sd

then rinse and repeat on whatever combo of dataset and variables you want!

(some combinations make more sense than others...)

next week. ..

- we look through everyone's datasets and discuss any issues that came up
- wide- vs long-format data, reshaping data, the concept of "tidy data"

- visualizing a dataset as a class (type-along)

- visualizing your own dataset with base graphics and ggplot2::

